origins

Origins of life

The earliest evolution of life included a series of transition from non-living matter, through prebiotic organic synthesis and chemical evolution, towards the Last Universal Common Ancestor of all life.
Our work focuses on the immediately-pre-life stage of evolution, when chemistry became biology.
We create synthetic minimal cells that exhibit some key properties of life, without being entirely alive. Those cells express proteins inside phospholipid liposomes, using cell-free protein expression systems. Thus, represent the latest stage of prebiotic evolution, after the establishment of the Central Dogma. Those cells do not exhibit active homeostasis, but they can maintain separate internal environment, they can grow, divide and evolve. The controllability and flexibility of those minimal cells allow us studying chemical processes underlying major transitions in evolution.
In our work, we create synthetic minimal cells expressing complex genetic pathways, with membrane proteins facilitating communication with external environment. Together, this creates a comprehensive system to study the advent of cellular processes on the boundary between prebiotic and Darwinian evolution.

Thank you for support: NASA and NSF.

We are part of  the COOL center
The Cool Team is conducting an interdisciplinary investigation of the origins, evolution and significance of translation, which is a window to primeval events and molecular structures. We will integrate biophysical, structural, bioinformatic, biochemical, chemical and evolutionary approaches to understand biology’s “internal fossil record”. Our overriding scientific question is: How did the original and most profound mutualistic relationship in biology, of polypeptide and polynucleotide, take root and ultimately come to define and rule the biological earth? The central question will be framed by four themes: (Theme 1) Evolution of translation in vivo, (Theme 2) Evolution of translation in vitro, (Theme 3) Walking back from extant biology and (Theme 4) Origins of MolecularMutualism.

Some of this work is done as part of The Chemical Ecosystem Selection Paradigm for the Origins of Life collaboration.  
The Chemical Ecosystem Selection Paradigm for the Origin of Life (CESPOoL) project will combine theoretical models of autocatalysis and surface pattern formation with multilevel selection theory to better understand the spontaneous emergence and adaptive evolution of life-like, autocatalytic chemical systems associated with mineral surfaces. Then, we will use this theory to refine implementation of a prebiotic analog of microbial ecosystem selection that has the potential to find surface-associated, life-like interacting molecular ensembles (SLIMEs) and enrich them to the point where they can be characterized and compared to biological life.